
1

Evaluating Security Requirements in a
General-Purpose Processor by Combining
Assertion Checkers with Code Coverage

Michael Bilzor∗, Ted Huffmire†, Cynthia Irvine†, Tim Levin†
∗U.S. Naval Academy †U.S. Naval Postgraduate School

Abstract—The problem of malicious inclusions in hardware is
an emerging threat, and detecting them is a difficult challenge.
In this research, we enhance an existing method for creating
assertion-based dynamic checkers, and demonstrate how behav-
ioral security requirements can be derived from a processor’s
architectural specification, then converted into security checkers
that are part of the processor’s design.

The novel contributions of this research are:
- We demonstrate the method using a set of assertions, derived

from the architectural specification, on a full-scale open-source
general-purpose processor design, called OpenRISC. Previous
work used only a single assertion on a toy processor design.

- We demonstrate the use of our checker-generator tool, called
psl2hdl, which was created for this research.

- We illustrate how the method can be used in concert with
code coverage techniques, to either detect malicious inclusions
or greatly narrow the search for malicious inclusions that use
rare-event triggers.

I. MALICIOUS INCLUSIONS

The threat of subversions in processors has gained attention
over the last few years, as noted in government reports [1],
academic research [2] and the media [3].

A malicious inclusion (MI)1 is a mechanism implanted in
a processor by which an attacker circumvents a processor’s
normal functionality. MIs can get into a hardware design in a
number of ways, and at different stages of design: an attacker
can try to compromise a processor’s high-level design, low-
level design, or even make physical modifications after it
is manufactured. Wang, Tehranipoor, and Plusquellic give a
taxonomy of malicious inclusions and examine the challenge
of detecting them [4].

Hardware security, in particular the detection of MIs in
processors, is a difficult challenge. Most detection efforts to
date have focused on equivalence-checking methods, in which
one processor or processor design is compared with another
[5], [6]. Design analysis methods to date have focused on
identifying unused or rarely-used circuits [7].

The method we use for detecting MIs, originally presented
by Bilzor et al. [8], takes a different approach; it is based on
the following observations:

• A security policy describes behaviors that are either
permitted or prohibited [9].

• The design of a general-purpose processor is usually
based on some governing document, called an architec-
tural specification, containing descriptions of permitted

1Sometimes referred to as a Hardware Trojan.

and prohibited behaviors, which can be modeled using
assertions.

• In the published examples of MIs to date, the MIs often
appear to cause a processor to express behaviors that are
prohibited by the architectural specification. Therefore,
the action of some MIs might be detectable at runtime
as violations of synthesized assertion-checkers, evaluating
those behavioral restrictions.

• Hardware engineers already use assertions to establish the
functional correctness of designs [10]; it seems natural
to also use assertions, which describe behaviors, to more
generally identify permitted and prohibited behaviors.

• Assertions, which derive from temporal logic, can be
converted into synthesizable checkers – hardware design
units which model the evaluation of the assertion formula
over time against a set of input values, and can be made
part of the design units being checked [11].

II. MODELING BEHAVIORAL RESTRICTIONS

A. Methodology and Workflow

Bilzor et al. introduced a workflow for generating PSL-
based runtime security checkers [8], but that demonstration
included only a single checker, used a very simple processor
model, and did not include coverage analysis, or employ
a fully developed checker generator tool. The steps of the
workflow are:

• In the processor architecture, identify statements which
specify behaviors that are permitted or prohibited.

• Translate the text statements into PSL assertions, using
the appropriate logic signals from the implementation.

• Using the available automated tools, translate the asser-
tions into synthesizable HDL modules, called checkers.

• Attach the checkers to the design, and evaluate them
under simulation or FPGA emulation, using a testbench.

• If desired, leave the checkers in the design, and fabricate
them along with the processor, to facilitate detection of
MIs in real time.

We follow this basic workflow in our demonstration, using
our new checker-generator, and also show how it can be used
in conjunction with code coverage to narrow the search for
obscure MIs and triggers.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 2012 2. REPORT TYPE

3. DATES COVERED
 00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
Evaluating Security Requirements in a General-Purpose Processor by
Combining Assertion Checkers with Code Coverage

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School,Monterey,CA,93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Proceedings of the IEEE International Symposium on Hardware-Oriented Security and Trust (HOST),
San Francisco, CA, June 2012, pp. 49-54

14. ABSTRACT
The problem of malicious inclusions in hardware is an emerging threat, and detecting them is a difficult
challenge. In this research, we enhance an existing method for creating assertion-based dynamic checkers,
and demonstrate how behavioral security requirements can be derived from a processor?s architectural
specification, then converted into security checkers that are part of the processor?s design. The novel
contributions of this research are - We demonstrate the method using a set of assertions, derived from the
architectural specification, on a full-scale open-source general-purpose processor design, called OpenRISC.
Previous work used only a single assertion on a toy processor design. - We demonstrate the use of our
checker-generator tool, called psl2hdl, which was created for this research. - We illustrate how the method
can be used in concert with code coverage techniques, to either detect malicious inclusions or greatly
narrow the search for malicious inclusions that use rare-event triggers.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2

Table I
Comparison of selected features of PSL checker generators.

Feature SynPSL MBAC psl2hdl
Parse All of PSL Simple Subset 3 3 3

Implement All Simple Subset Assertions 3 3
Create Synthesizable Checkers 3 3 3

Implement Ranged SEREs 3 3 3
Generate Abstract Syntax Tree Output 3

Parse All of Underlying Flavor (Verilog) 3
Support Built-in Function Calls some some

DFA Minimization partial 3
Full Boolean-Layer Optimization 3

VHDL and Verilog Output 3

B. The Property Specification Language

The Property Specification Language (PSL) is a temporal
logic language, designed to describe the behavior of electronic
circuits over time [12]. PSL is primarily used in functional
verification of processor designs in hardware design language
(HDL) format, such as VHDL or Verilog. For a detailed look
at PSL, the reader is referred to the excellent summary by
Eisner and Fisman [13].

C. A “Checker Generator” - psl2hdl

For this research, we created our own tool for synthesizing
PSL-based assertion checkers. Written in Python, our tool
follows the example of Boulé and Zilic, who developed a
checker-generator method for PSL; their checker generator is
called MBAC [11], [14]. We started with a PSL lexer and
parser, based on the Python parsing add-on P-L-Y [15], con-
structed by Findenig for the SynPSL checker-generator [16],
and then built our own full checker-generator, called psl2hdl.
We added several new features, such as the construction and
display of PSL abstract syntax trees in Graphviz format [17],
addition of complex boolean functions and boolean simplifica-
tions, and support for both VHDL and Verilog output. Because
the method uses automata as an intermediate representation,
we also implemented a full state-minimization algorithm.

The principal advantage of synthesizable checkers is that
they can be used across essentially the entire processor de-
velopment cycle: simulation, FPGA emulation, and silicon
fabrication. Some commercial tools support PSL assertions
in simulation, but using synthesizable checkers instead makes
them supportable by any HDL simulator. The minor enhance-
ments added to psl2hdl are compared with other checker-
generators in Table I.

III. DETECTING PROCESSOR MALICIOUS INCLUSIONS

The idea of the experiment is to illustrate how processor
MIs can be detected at runtime. Because we designed both
the checkers and the MIs, the demonstration is academic in
that regard. We are not aware of any adversarial experiments
in MI detection using general-purpose processors, where one
group designs the MIs, and another group attempts to detect
them, but we believe this is important future work.

This experimental demonstration is a proof of concept,
showing how the behavior of some MIs, representative of those

observed to date, can be detected using assertion checkers that
are based on behavioral requirements from an architectural
specification. Because the experiment is a proof of concept for
a novel method, rather than a quantitative comparison between
methods, the total number of MIs and checkers is not of central
importance, and adding more of either would not add value to
this demonstration.

First, we implemented an open-source general-purpose pro-
cessor model, whose design code and supporting tools are
freely available, and created several “typical” MIs targeting
it, based on examples in the literature. Next, we used the
text of the processor’s architectural specification to generate
a set of representative security assertions, describing various
prohibited behaviors, in PSL, knowing a priori that some of
the prohibited behaviors would be expressed by the MIs. We
converted the assertions into assertion checkers, using our tool,
and installed the checkers in the design. Finally, we modified
the processor testbench and firmware to run, both with and
without the MI triggers, and observed the checkers, verifying
that they do detect the occurrence of the prohibited behaviors
in question, when those behaviors occur.

We verified the behavior of the synthesizable checkers
against commercial software-based assertion-checkers, using
the same PSL formulas, by observing that the synthesizable
checkers (installed in the design) and the simulation-only “soft
assertions” agree (hold or fail together), at all clock cycles.

Although we already knew that some of the MIs we
created would violate corresponding behavioral restrictions
from the architecture, we used the experiment to determine
the following:

• Can the behavioral restrictions be correctly translated into
PSL assertions?

• Can the assertions be correctly2 converted into checkers?
Can the conversion be done efficiently, in terms of time
and space required?

• Do the checkers correctly identify the offending behav-
iors, with no false positives and no false negatives?

We were able to answer all these questions affirmatively in
our demonstration.

A. OpenRISC Design

Because the HDL for commercial processors is protected in-
tellectual property, we chose an open-source processor design
for our demonstration. OpenRISC is an advanced open-source
processor architecture, supported by many contributors, and
hosted by the OpenCores organization [18]. The current CPU
design is called the or1200. It has its own full MIPS-style
basic 32-bit instruction set. OpenRISC processor designs have
a pipelined execution unit, exception-handling units, data and
instruction caches, memory-management units, a Wishbone
bus, a debug unit, and support for peripherals via the bus.
There are several OpenRISC implementations; the one we used
for these experiments is called MINSOC, for “minimal system
on chip,” designed by Fajardo [19]. MINSOC has an or1200
CPU plus on-chip memory, and includes Ethernet and UART
units for input and output.

2In terms of the PSL formal semantics

3

B. Malicious Inclusions

We designed two MIs for these experiments.
MI #1 allows a software process running in the processor’s

User Mode to escalate its privilege level to Supervisor Mode,
and is similar to other demonstrated MIs [2]. Once a process is
running in Supervisor Mode, any number of software attacks
are possible, as shown in the combined hardware-software
attacks of King, et al. [2]. The MI on-trigger and off-trigger are
unique opcode/data combinations that are extremely unlikely
to occur unintentionally.

MI #2 is designed to be able to leak data from memory
out the UART port. Upon receipt of the input trigger (“Get
Data") plus a memory location, the MI copies a sequence
of bytes from the memory location, bypassing the normal
memory access mechanism, and sends the data back out the
port. No software is involved in this attack.

C. Requirements, Assertions, and Checkers

In order to infer the processor’s security requirements,
or behavioral restrictions, we reviewed the OpenRISC and
MINSOC manuals for statements that dictated security-
relevant behaviors. Though the manuals, like the processor
design itself, are evolving, we identified around a dozen
requirements that could be implemented as assertions. In some
cases, the behavior of a certain signal or component may be
only partially specified, i.e., it is required to behave in a certain
way under certain conditions, but its behavior is otherwise
not dictated. From a security standpoint, it is desirable that
behaviors be fully specified - that is, a given behavior should
be either permitted or prohibited, but not neither, both, or
unspecified.

We implemented the ten requirements listed below, derived
from the OpenRISC architectural manuals, using PSL asser-
tions. Note there can be a one-to-many relationship between a
requirement and the assertions needed to implement it, because
often many signals and units, across varying components in a
design, may collectively carry out a given function. For these
examples, we use one or two assertions per requirement. A
hardware behavior in the processor is permitted if it meets the
conditions listed below, and prohibited otherwise.

1) Group 0 special registers may only be modified if the
CPU is already in supervisor mode.

2) Supervisor mode is only entered from User Mode on
reset startup, or exception entry.

3) Exception handling is only entered if one of the identified
exception mechanisms is activated.

4) Custom instruction opcodes are permitted, but must
be declared in the implementation; unspecified custom
instructions are not allowed.

5) Instructions in the interrupt servicing area of memory
must only be accessed during exception processing,
unless the processor is in supervisor mode, or in a reset.

6) A page fault must be generated if the MMU detects an
access control violation for reads and writes.

7) The UART output signals may only change if a write
has been commanded from the CPU.

8) A data change to the Ethernet output at the pad should
only occur if a transmit has been commanded, or during
Ethernet or CPU initialization.

9) The Debug Unit’s Value and Control registers are only
accessible from Supervisor Mode.

The behavioral requirements derive from the architectural
specification, not the implementation, so the assertion-checkers
operate independently of the design units they monitor.

D. Simulation

To create our simulation and testbench, we implemented
the MINSOC system-on-chip on Mentor Graphics’ QuestaSim
simulator. We used the OpenRISC toolchain to cross-compile
“firmware” to run on MINSOC, including test programs that
did and did not include triggers for the MIs. We modified
the MINSOC simulator testbench to send Ethernet and UART
input data to MINSOC from the “outside world.” The firmware
includes a bootloader that sets up the memory space, execution
stack, and interrupts, then hands control to the main program.

We used psl2hdl to synthesize the ten assertions above into
Verilog assertion-checkers, then added the Verilog modules to
the design. We ran the simulation testbench with and without
the MI triggers. Without the MI triggers, the testbench operates
normally, and no assertions report failures. With the MI
triggers, both MIs are activated. MI #1 elevates the processor
from User Mode to Supervisor Mode directly, then returns
it to User Mode. MI #2 reads the trigger’s memory location,
surreptitiously copies eight bytes from memory starting at that
location, and sends the data out the UART.

Results summary: As expected, the assertion-checker for
Requirement #2 reports a failure when MI #1 operates, and the
assertion-checker for Requirement #7 reports a failure when
MI #2 operates. Otherwise, all assertions hold at all times; see
Tables II for full results.

Table II
OPENRISC TESTBENCH: ASSERTION STATUS, WITH MI TRIGGERS

INACTIVE (LEFT) AND ACTIVE (RIGHT). NOTE THE CORRESPONDENCE
BETWEEN THE SIMULATOR-ONLY SOFT ASSERTIONS AND THE
SYNTHESIZABLE CHECKERS (HOLD AND FAIL AGREEMENT).

MI Triggers Inactive MI Triggers Active
Rqmnt. Soft Assertion Checker Soft Assertion Checker

1 Hold Hold Hold Hold
2 Hold Hold *Fail* *Fail*
3 Hold Hold Hold Hold
4 Hold Hold Hold Hold
5 Hold Hold Hold Hold
6 Hold Hold Hold Hold
7 Hold Hold *Fail* *Fail*
8 Hold Hold Hold Hold
9 Hold Hold Hold Hold

E. Adding Coverage

One important limitation of trying to detect MIs using
security checkers is the difficulty in triggering the MIs, if they
employ rare-event triggers. Because of this challenge, security
checkers may be best employed in conjunction with other
techniques. For example, in normal verification, engineers run
validation tests and collect “coverage" data, which might in-
clude what percentage of the HDL assignment statements was

4

executed. Engineers strive for 100% coverage, and compliance
with all assertions, as reasonable assurance of a design’s
proper implementation [10].

A circuit testbench is a software entity that is used to drive
the inputs of a hardware design in simulation, so that the
proper function of the circuit under test can be evaluated.
Circuits that are not exercised by the testbench are flagged as
suspicious. The rationale behind this approach is that a well-
designed testbench should exercise all, or nearly all, portions
of a design; sections not exercised could be the result of 1) an
incomplete testbench, 2) an extraneous piece of the design, or
3) rare-event-triggered malicious circuitry. Our strategy is as
follows:

• Design a thorough testbench, with the goal of achieving
100% coverage.

• Implement the assertion checkers.
• If we can reach 100% coverage (all forms - statement

coverage, branch coverage, FSM coverage, etc.) in all de-
sign units and all of the assertion checkers hold, then the
design does not violate the security policy, as expressed
by the checkers (though the design could still violate a
policy requirement that’s omitted from the checkers).

• If we cannot achieve 100% coverage but the checkers
hold, at least the “covered” portion of our design does not
violate the security policy, as expressed by the checkers,
and we can focus on the “uncovered" portions for further
(manual) analysis.

By using this combination of techniques, we can detect some
MIs when they do activate, and constrain our search to a small
portion of the design when they do not. To illustrate this point,
Table III shows the decrease in statement coverage, in some
of the “infected” design units, when the MI triggers are turned
off. The larger the fraction of the design unit taken up by the
MI, the larger the decrease when the MI is inactive.

Table III
TESTBENCH STATEMENT COVERAGE IN SELECTED UNITS, WITH AND

WITHOUT AN ACTIVE MI TRIGGER

Unit MI Trigger Active MI Trigger Inactive
uart_top.v 100% 50%

eth_rxethmac.v 95% 73%
or1200_if.v 100% 95%

Consider the following example. Suppose a Verilog design
has a few lines of malicious code in it (which would be
obfuscated in a real instance). Whenever the MI trigger is
active, the circuits represented by this section of Verilog
code will perform their function. Fortunately, these particular
malicious behaviors are covered by some assertion-checkers.
During a simulation run, executing these Verilog instructions
corresponds to being “covered” during the run, such as by
statement coverage (though we could also employ branch
coverage and other forms). QuestaSim uses a checkmark (3)
to indicate that a statement has been covered, and an X to
indicate that it has not.

In the first case, the simulation testbench has been run, but
the testbench did not manage to trigger the malicious circuitry.
The designer has not seen a security-checker violation, but

notices that 100% statement coverage has not been achieved,
since some (5) marks remain:

3 always @(posedge clk)
3 begin
3 if (secret_trigger)
5 begin
5 do_evil_signal <= 1’b1;
5 open_backdoor <= 1’b1;
5 end
3 end

evil_checker: (holds)
backdoor_checker: (holds)

In the second case, the simulation testbench has been run
(perhaps for longer, or with a better mix of random input
vectors), and this time the testbench did trigger the malicious
circuitry. The designer has improved the statement coverage,
possibly nearer to 100% on this module, but now the security
checkers fail:

3 always @(posedge clk)
3 begin
3 if (secret_trigger)
3 begin
3 do_evil_signal <= 1’b1;
3 open_backdoor <= 1’b1;
3 end
3 end

evil_checker: (fails)
backdoor_checker: (fails)

By combining security checkers and statement coverage in
this manner, we can increase our assurance that the design
obeys the specified security requirements, and at the same time
focus our search for MIs on smaller portions of the design,
rather than analyze every line of code.

IV. ANALYSIS AND CONCLUSIONS

A. Overhead

To get a rough idea of the performance impact of adding the
checkers in this instance, we synthesized the MINSOC design
using the Xilinx ISE for a Virtex-5 target FPGA. With just
these ten assertion checkers added, the maximum speed was
not affected (79 MHz either way), and the number of logic
gates used increased .03%. Checkers derived from automata
generally use little space in synthesis because each state of
an automaton can be modeled using a single flip-flop, and
the edges use a small number of AND-gates and OR-gates.
Some of the automata in our other test cases have grown
as large as 20-30 states, but all the automata used to instru-
ment the MINSOC security assertions needed five states or
fewer. During the phase in which the automata are composed
with one another, our algorithm continually performs boolean
simplification and automata trimming, eliminating states and
transitions that are extraneous.

5

Separate from this investigation, we synthesized a set of
65 benchmark PSL assertions, pulled from various checker-
generator publications, and determined the average number of
flip-flops and logic gates a checker requires. We also analyzed
the MIPS architecture [20], as a commercial example, to get
an idea of roughly how many behavioral requirements would
need to be modeled in a processor. Combining data from these
two studies leads us to conclude (see [8] for details) that the
necessary power and area overhead added by a complete set of
checkers will normally range from approximately 1%-5% of
a processor’s total, depending on the number of requirements.

B. Soundness and Completeness

It is important to be sure the synthesized assertion-checkers
behave correctly, i.e., that they properly hold or fail on a
given sequence, according to the defined semantics of the PSL
formula [12]. Checker generation is a three-step process: the
PSL formulas are rewritten into simplified form, automata are
generated from the simplified formulas, and the automata are
converted to synthesizable HDL checkers.

Morin-Allory, Boulé, Borrione, and Zilic used the PVS
theorem prover to prove the consistency of the rewrite rules,
with respect to the formal PSL semantics [21]. We have
separately performed a structured verification of the soundness
and completeness of both the automata construction and the
generation of HDL modules from the automata, to establish
end to end correctness of the method [22]; the analysis is
omitted here due to space limitations.

As a cross-check, for this research we also implemented all
the PSL assertions natively in QuestaSim; on each simulation
run, we confirmed that the “soft" assertions in QuestaSim
behave the same as our synthesized assertions (Table II).

C. Strengths and Limitations

We assess the following as strengths of the method:
• Persistence. One advantage of evaluating security dy-

namically, rather than statically, is that static analysis
of a high-level design does not account for malicious
changes made afterward, to the low-level design or the
physical system. Dynamic security evaluation, can detect
MIs inserted after the high-level design phase (though a
sophisticated attacker could emplace an MI and bypass
the monitoring system at the same time; but the monitors
make his task more difficult).

• Early Frame of Reference. Assertion-based security
checkers do not rely on a trusted “golden sample” for
reference; they appeal instead to requirements stated in
design documents like the architectural specification. This
mitigates the main problem of equivalence-checking: the
trusted reference may itself be compromised.

• Detection of Small MIs. Physical analysis methods are
limited in their ability to detect changes in a processor
whose size is a small fraction (around .01%) of the overall
processor size [23]. Design analysis methods, like the use
of security checkers, can detect even very small changes
to a design.

• Compatibility. Runtime security checkers can be used in
concert with a variety of other techniques. For example,
after designing security checkers for a processor, the
processor design netlists can be obfuscated, to deter
subsequent tampering, without affecting operation of the
monitor units. As described above, design analysis meth-
ods that identify rarely-used or unused circuits can be
applied together with security checkers in a complemen-
tary fashion.

And the following as limitations:

• Level of Effort. Creating security checkers for an entire
design is a great deal of work to require of a processor
designer, and adds to the normally significant effort of
ordinary functional verification, which is closely related.
The methodology also requires architectural designers to
be far more complete in terms of describing permitted
and prohibited behaviors, compared to the level of detail
normally observed today.

• Completeness. Although most behavioral requirements
will be dynamically enforceable, some may not be.
Also, the implementation requires that every behavioral
restriction in the specification be checked against every
hardware module in the design related to that function;
a complete implementation will often require multiple
checker modules per behavioral restriction.

• Modeling Memory. Although the method works well for
logic circuits, it does not appear well suited for storage
circuits, such as cache or banks of RAM, since each
memory unit would need its own checker. For these types
of circuits, we believe it would be more appropriate
to verify fidelity using other techniques, such as error-
correcting circuits, encryption, hashing, etc.

D. Related Work

Abramovici and Bradley proposed the use of “Security
Monitors” within a fabricated design, but left open the details
of how to construct the monitors [24], whereas we propose a
specific methodology.

Love, Jin, and Makris recently proposed a design analysis
method employing theorem-proving of security properties for
hardware designs. They translate an HDL specification into
an equivalent form in the “Coq” language and use automated
tools to assist in the proofs. Their approach differs from ours
in that it is static, rather than dynamic, not synthesizable, not
in a native HDL, and has been tested on a small design unit
rather than a general-purpose processor [25].

Zhang and Tehranipoor proposed a design analysis method
that also uses a combination of code coverage techniques
and assertions, but their assertions are not synthesizable and
therefore only checked in software, and their method has
been tested against smaller hardware design units, rather than
general-purpose processors [26].

There are several proposed methods for inferring the pres-
ence of an MI in a processor, given a trusted reference sample,
by detecting physical artifacts, for example small deviations
in power or timing, by Jin and Makris [6], Chakraborty et al.

6

[27], and Rad, Tehranipoor, and Plusquellic [5]. These physical
analysis methods are complementary to our efforts.

Several researchers have proposed MI-detection methods
that concentrate on identifying infrequently excited circuits.
“Trusted RTL” by Banga and Hsiao is one example [28]. The
“Blue Chip” technique, by Hicks et al., identifies as suspicious
those circuits not exercised by a testbench, then bypasses the
suspicious circuits using interrupts and software emulation [7].
Our approach employs coverage similarly, but instead uses it
in conjunction with dynamic checkers.

Waksman and Sethumadhavan describe how to counter the
malicious insider threat by having the elements of a processor
monitor data transactions among the other elements, in a form
of mutual suspicion and checking [29]. Because MIs are often
triggered by a rare event, and lie undetected otherwise, Waks-
man and Sethumadhavan have recently proposed a method for
deterring MIs by preventing them from being triggered at all,
using isolation and encryption techniques [30]. Both methods
are independent of, but complementary to, our method.

E. Future Work

For our proposed technique, and others, it would be worth-
while to perform an adversarial (i.e., double blind) experiment,
in which MI designers compete against processor designers,
so that the defenders have no knowledge of what circuits the
attackers will target. The annual Embedded Systems Challenge
has had a format like this, but for smaller designs [31].

As noted by Tehranipoor, a set of standardized metrics for
MI detection methods would be useful [32]. Similarly, a public
corpus of sample MIs targeting general-purpose processors
would be a valuable resource.

V. ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their insightful comments. This research was funded in
part by National Science Foundation Grant CNS-0910734.
The views presented in this paper are those of the authors
and do not necessarily reflect the views of the United States
Department of Defense.

REFERENCES

[1] Office of the Undersecretary of Defense for Acquisition, Technology,
and Logistics, “Report of the Defense Science Board task force on high
performance microchip supply,” Tech. Rep., February, 2005.

[2] S. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and Y. Zhou, “De-
signing and implementing malicious hardware,” in Proceedings of the
1st USENIX Workshop on Large-Scale Exploits and Emergent Threats.
USENIX Association, 2008, pp. 1–8.

[3] S. Adee, “The hunt for the kill switch,” Spectrum, IEEE, vol. 45, no. 5,
pp. 34–39, May 2008.

[4] X. Wang, M. Tehranipoor, and J. Plusquellic, “Detecting malicious
inclusions in secure hardware: Challenges and solutions,” in Hardware-
Oriented Security and Trust, IEEE International Workshop on, 2008, pp.
15–19.

[5] R. Rad, J. Plusquellic, and M. Tehranipoor, “Sensitivity analysis to
Hardware Trojans using power supply transient signals,” in IEEE In-
ternational Workshop on Hardware-Oriented Security and Trust, June
2008, pp. 3–7.

[6] Y. Jin and Y. Makris, “Hardware trojan detection using path delay fin-
gerprint,” in Hardware-Oriented Security and Trust, IEEE International
Workshop on, May 2008, pp. 51–57.

[7] M. Hicks, M. Finnicum, S. King, M. Martin, and J. Smith, “Overcoming
an untrusted computing base: Detecting and removing malicious hard-
ware automatically,” in Proceedings of the 31st IEEE Symposium on
Security and Privacy, May 2010, pp. 159–172.

[8] M. Bilzor, T. Huffmire, C. Irvine, and T. Levin, “Security checkers: De-
tecting processor malicious inclusions at runtime,” in IEEE International
Symposium on Hardware-Oriented Security and Trust, June 2011, pp.
34–39.

[9] F. Schneider, “Enforceable security policies,” ACM Transactions
on Information System Security, vol. 3, no. 1, pp. 30–50, 2000.
[Online]. Available: http://doi.acm.org/10.1145/353323.353382;http://
doi.acm.org/10.1145/1168857.1168890

[10] S. Iman, Step by Step Functional Verification with SystemVerilog and
OVM. San Francisco, CA: Hansen Brown Publishing Company, 2010.

[11] M. Boule and Z. Zilic, Generating Hardware Assertion Checkers.
Montreal, Canada: Springer, 2008.

[12] IEEE, “Standard 1850-2010, for the Property Specification Language
(PSL),” pp. 1–171, June 2010.

[13] C. Eisner and D. Fisman, A Practical Introduction to PSL. New york,
NY: Springer, 2006.

[14] M. Boule and Z. Zilic, “Efficient automata-based assertion-checker
synthesis of PSL properties,” in Eleventh Annual IEEE International
High-Level Design Validation and Test Workshop. IEEE Computer
Society, November 2006, pp. 69–76.

[15] D. Baez. (2011, August) PLY (Python Lex-Yacc) Homepage. http:
//www.dabeaz.com/ply/.

[16] R. Findenig, “Behavioral synthesis of PSL assertions,” Hagenburg,
Austria, M.S. thesis. Upper Austrian University of Applied Sciences,
2007.

[17] Graphviz Organization. (2011, August) Graphviz. http://www.graphviz.
org/.

[18] OpenCores Foundation. (2011, August) http://opencores.org/.
[19] R. Fajardo, “Minimal OpenRISC system on chip user manual. Open-

Cores.org,” September 2010.
[20] MIPS Technologies, Inc., “MIPS architecture for programmers, Vol. I-

III,” 2010.
[21] K. Morin-Allory, M. Boulé, D. Borrione, and Z. Zilic, “Validating

assertion language rewrite rules and semantics with automated theorem
provers,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 29, no. 9, pp. 1436–1448, September 2010.

[22] M. Bilzor, “Defining and enforcing hardware security requirements,”
Ph.D. dissertation, Comp. Sci. Dept., U.S. Naval Postgrad. Sch., 2011.

[23] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar,
“Trojan detection using IC fingerprinting,” in Security and Privacy, IEEE
Symposium on, May 2007, pp. 296–310.

[24] M. Abramovici and P. Bradley, “Integrated circuit security: New
threats and solutions,” in CSIIRW ’09: Proceedings of the 5th Annual
Workshop on Cyber Security and Information Intelligence Research.
ACM, 2009, pp. 1–3. [Online]. Available: http://doi.acm.org/10.1145/
1558607.1558671

[25] E. Love, Y. Jin, and Y. Makris, “Enhancing security via provably
trustworthy hardware intellectual property,” in IEEE International Sym-
posium on Hardware-Oriented Security and Trust, June 2011, pp. 12–17.

[26] X. Zhang and M. Tehranipoor, “Case study: Detecting Hardware Trojans
in third-party digital IP cores,” in IEEE International Symposium on
Hardware-Oriented Security and Trust, June 2011, pp. 67–70.

[27] R. Chakraborty, F. Wolff, S. Paul, C. Papachristou, and S. Bhunia,
“MERO: A statistical approach for Hardware Trojan detection,” in
Proceedings of the 11th International Workshop on Cryptographic
Hardware and Embedded Systems, ser. CHES ’09. Springer-Verlag,
2009, pp. 396–410.

[28] M. Banga and M. Hsiao, “Trusted RTL: Trojan detection methodology
in pre-silicon designs,” in IEEE International Symposium on Hardware-
Oriented Security and Trust, Anaheim, CA, June 2010, pp. 56–59.

[29] A. Waksman and S. Sethumadhavan, “Tamper evident microprocessors,”
in Proceedings of the 31st IEEE Symposium on Security and Privacy,
May 2010, pp. 173–188.

[30] ——, “Silencing hardware backdoors,” in Security and Privacy, IEEE
Symposium on, May 2011.

[31] Y. Jin, N. Kupp, and Y. Makris, “Experiences in hardware trojan design
and implementation,” in Hardware-Oriented Security and Trust, IEEE
International Workshop on, 2009, pp. 50–57.

[32] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan
taxonomy and detection,” IEEE Design and Test of Computers, vol. 27,
no. 1, pp. 10–25, 2010.

	Malicious Inclusions
	Modeling Behavioral Restrictions
	Methodology and Workflow

	Modeling Behavioral Restrictions
	The Property Specification Language
	A ``Checker Generator'' - psl2hdl

	Detecting Processor Malicious Inclusions
	OpenRISC Design
	Malicious Inclusions
	Requirements, Assertions, and Checkers
	Simulation
	Adding Coverage

	Analysis and Conclusions
	Overhead
	Soundness and Completeness
	Strengths and Limitations
	Related Work
	Future Work

	Acknowledgments
	References

